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ABSTRACT

This Progress Report covering the period of June I, 1993 to December

], 1993 presents the development of an analytical solution to the heavy

ion transport equation in terms of a one-layer Green's function formalism.

The mathematical developments are recasted into an efficient compuhsr

code for space applications. The efficency of this algorithm is accom-

plished by a nonperturbative technique of extending the Green's function

over the solution domain. The code may also be appl_ed to acce]erahor

boundary conditions to allow code validation in laboratory experiments.

Results from the isotopic version of the code with 80 isotopes present

for a single layer target material, for the case of an Iron beam

projectile at 600 MeV/nucleon in water is presented.
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INTRODUCTION

Future NASA missions will be limited by exposure to space radiations

unless adequate shielding is provided to protect men and equipments

from such radiations. Adequate methods required to estimate the damage

caused by such radiations behind various shields can be evaluated prior

to commitment to such missions.

From the inception of the Langley Research Center heavy ion (HZE)

shielding program (refs. 1-3), there has been a continued, close relation-

ship between code development and laboratory experiment (ref. 3). Indeed,

the current research goal is to provide computationally efficient high

charge and energy ion (||ZE) transport codes which can be validated w_th

laboratory experiments and subsquent]y applied to space engineering design.

In practice, two streams of code development have prevailed due to the

strong energy dependence of necessary atomic/molecular cross sections and

the near singular nature of the laboratory beam boundary conditions (refs.

4-6). The atomic/molecular cross section dependence is adequately dealt

with by using the methods of Wilson and Lamkin (ref. 7), allowing effici-

ent numerical procedures to be developed for space radiations (refs.

6,8-10). Although these codes could conceivably be applied to the labo-

ratory validation, methods to control truncation and discretization errors

would bear little resemblance to the space radiation codes attempting to be

validated. Clearly, a radical reorlentatlon is required to achieve the

validation goals of the current NASA space radiation shielding program,

and such an approach is the main thrust of this research and is briefly

described below.
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A useful technique in space radiation shieldinq is the use of the impulse

response Green's function (refs. ll,12), which satisfies the Boltzman

equation of the form

]YE j(E)+ jGjm(E,Eo,6, )

where Gjm reduces to a monoenergetic unidirectional function at the bound-

ary, Sj(E) is the stopping power, _ is the total cross section, and _jk

is the inclusive differential cross section. An arbitrary solution to the

Bolt_man equation within a closed convex region can b_ wrltt_n as

W_

x (2)

wher_ fm(E',_',_) is the incident flux at the boundary (ref. ]I). Since

transport problem is formulated _n t_rms of a single Greerl's function

algorithm, the validation of the Green's function in the laboratory

meets the objective of havirl9 a space validated code. Since there is

hope of a Green's function based on an analytical solution of the

Boltzmann equation (ref. 13), the resultinq evaluation of the shield

properties should be computatlonally efficient.

The first step in this process is to develop an equivalent Green's

function algorithm in one dimension to match the current capability

in space radiation transport calculation (refs. 6,14). The algorithm

is based on the closed form solution to the one dimensional equation



__j / ajk (E,E')Gkm (EJ, Eo, z)dE ' (3)
k

for a monoenergetic beam at the boundary. The probality of validation

20
for Ne beams of this algorithm (with multiple scattering corrections)

has already shown good correlation (refs. 5,15), but improvements in

the nuclear data base are required for achieving higher correlations

with experiment. If considerations are restricted to multiple charged

ions then the right hand side of equation (3) can be further reduced to

o_ _(E) + .j] Cjm(E, Eo,_)

= _ oj_ekm(_,Eo,,) (4)
k

for which a solution is presented below.

APPROXIMATE GREENS'S FUNCTION

Equation (4) can be simplified by transforming the energy into the

the residual range as

F

L

/o Erj = dE'/Sj(E') (5)

and defining new field variables as

%bj(z, rj) = Si(E)¢j(x, E)

Qjm(Z, rj, rtm) = Sj( E)Gjm(Z, E, E')

(6)

(7)

so that equation (4) becomes



[o o ]o= % + _J O_m(Z,r_,r'm)

(s)

L

6

r

k

with boundary condition

Ojm(O, rj,rm) = _jm _(rj -- rl,)

and

(9)

! t !
Ojml=,u,rm)im(rm)ar m 110)

The solution to equation (8) may be written as

r,(Or= 'Ojm(=,ri,r'm)= _,,_,,,, ,rj,r.,) 111)
i

where zeroth order term of equation (ii) is

rm) = 9(J) + -

and the first order term of equation (II) is

j,.' ' ._'
9 aj_ g(j,_)

(13)

with the condition that n(1)Iz r. r_,)
='jm _ ' 3'

vj . , <vi r/+ =_(_, + =)_<_ _ _., (14)

is zero unless

_%e second order terms of equation (ii) are

0!2) o_kokra 9(j,k,.,),,.(=,rj,r:.)_ _ (15)
r/u -- r I

k mt

a(2)r=
with the condition that Uj,n _ ,rj, r_n) are nonzero for
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rmt < rim <

where

r I
mu (16)

v,. (vk > v_ > ,3)

vv_rj + x (Vm > ,3 > vk )

(17)

and

t.

k

[

L

I Z/-(U + x) (_., > '_k> _j) }

I,m

I _.. V

(_m > "j > "k)
Vm

(18)

The third order terms of equation (II) are

_ oj_ okt otto 9(j,k,t,m)V- - _-_,/ (19)
k,t mu- ml

and similarly for higher order terms. In the

are given by

g(J)= e-°J= (20)

and

g(j,,j_,..,j.,J.+,)

_(J,,J,...J,-1, J-) - g(J,,h...,J,-*,J,+*) (21)
oj.+l - oj.

above the g's of n arguments

[



In terms of above, the solution to equation (4) may be written as

"i" z_.s _jm..

m,i

(22)

where

ajj,°jlj2 " "ojn-_m 9(J,JlJ2 ""J--2 ,m) (23)
A(O

J, ,J2""J.-2

L

=

for i=l, the denominator of equation (23) is

A(_)= = ("m _ i) (24)
vj

and for i)l, the denominator becomes

k Vm/

= k v,. v,. /

(Vm > vk > vj)

(v_. > vm > vj)

(_m > vj > vl,)

(2s)



In equation (22), Fm(E) is the integral flux at the boundary, and

is defined as

fFro(E) = fm(E')dE' (26)

Implementation oE equation (22) can now be accomplished independent

of the character of the boundary values _ (E) and will give accurate

results for both space and laboratory applications.
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DISCUSSION OF RESULTS
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Values of collision related fluxes for 3 depths of water target

for a mono-energetic beam of Iron projectile with 600 MeV/nucleon

are shown in figures 1 through 3 for both the perturbative and

nonperturbative Green's function methods for the direct comparison

of the two methods. The first three collision terms and the sum of

all collision terms of both theories at a depth of 5 cm of water

are shown in figure I.A through I.H. The differences in the spectral

shape is due to the simplification of the attenuation term in the

nonperturbative theory. The nonperturbation terms represnt the

average spectrum while pmrturbation theory retains the spectra] shape.

Figures 2.A through 2.H and 3.A through 3.}{ are the corresponding

comparison of the two methods at depths of i0 and 15 cm of water.

Direct comparsions of figures 1 through 3 shows that the sequence of

perturbation terms appear to be converging to a result similar to that of

nonperturbative result.

The main advantage of nonperturbahive methods are in their

computational efficencies. The computational time required for the

nonperturbative code is about I0 minutes on VAX 4000 compared

to 15, 45, 90 minutes for the ]-st, 2 nd and 3-rd collision terms

of the perturbation solution.

Figures 4.A through 4.C show the corresponding differential LET

spectrum using the method of reference 16. The highest LET peak is due

to the primary beam and the ion fragments. The successive peaks below

iron are due to lower atomic weight fragments. Such LET spectra can

be compared to experimental measurments directly.
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Figure I.A. l-st term nonpertubation solution at a depth of 5 cm of water

for a 600 MeV/nucleon Iron projectile.
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Figure I.B. l-st term perturbation solution at a depth of 5 cm of water

for a 600 MeV/nuc]eon Iron projectile.
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Figure ].C. 2-nd term nonperturbation solution at a depth of 5 cm of water

for a 600 MeV/nucleon Iron projectile.
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Figure I.D. 2-nd term perturbation solution at a depth of 5 cm of water

for a 600 HeV/nucleon Iron projectile.
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Figure I.E. 3-rd term nonperturbation solution at a depth of 5 cm of water

for a 600 MeV/nucleon Iron projectile.
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Figure I.F. 3-rd term perturbation solution at a depth of 5 cm of water

for a 600 MeV/nucleon Iron projectile.
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Figure I.G. All terms nonperturbation solution at a depth of 5 cm of water

for a 600 MeV/nucleon Iron projectile.
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Figure 1.It. All terms perturbation solution at a depth of 5 cm of water

for a 600 MeV/nucleon Iron projectile.
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Figure 2.A. l-st term nonperturbation solution at a depth of i0 cm of water

for a 600 MeV/nucleon Iron projectile.
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Figure 2.B. l-st term perturbation solution at a depth of I0 cm of water

for a 600 MeV/nucleon Iron projectile.
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Figure 2.C. 2-nd term nonperturbation solution at a depth of I0 cm of water

for a 600 HeV/nucleon Iron projectile.
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Figure 2.D. 2-nd term perturbation solution at a depth of I0 cm of water

for a 600 HeV/nucleon Iron projectile.
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Figure 2.E. 3-rd term perturbation solution at a depth of I0 cm of water

for a 600 MeV/nucleon Iron projectile.
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Figure 2.F. 3-rd term perturbation solution at a depth of I0 cm of water

for a 600 MeV/nucleon Iron projectile.
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Figure 2.C. All terms nonperturbatlon solution at a depth of I0 cm of water

for a 600 MeV/nucleon Iron projectile.
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Figure 2.H. All terms perturbation solution at a depth of 10 cm of water
for a 600 HeV/nucleon Iron projectile.
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Figure 3.A. I-st term nonperturbation solution for a depth of|5 cm of water

for a600 MeV/nucleon Iron projectile.
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Figure 3.B. 1-st term perturbation solutioh for a depth of 15 cm of water

for a 600 MeV/nucleon Iron projectile.
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Figure 3.C. 2-nd term nonperturbation solution for a depth of 15 cm of water

for a 600 MeV/nucleon Iron projectile.
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Figure 3.D. 2-nd term perturbation solution for a depth of 15 cm of water

for a 600 MeV/nucleon Iron projectile.
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Figure 3.E. 3-rd term nonperturbation solution for a depth of 15 cm of water

for a 600 MeV/nucleon Iron projectile.
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Figure 3.F. 3-rd term perturbation solution for a depth of 15 cm of water

for a 600 MeV/nucleon Iron projectile.
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Figure 3.G. All terms nonperturbation solution for a depth of ]5 cm of water

for a 600 MeV/nucleon Iron projectile.
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Figure 3.11. All terms perturbation solution for a depth of 15 cm of water
for a 600 MeV/nucleon Iron projectile.
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Figure 4.A. Differential LET spectrum for a depth of 5 cm of water for a 600

MeV/nucleon Iron projectile.
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Figure 4.B. Differential LET spectrum for a depth of I0 cm of water for a 600

MeV/nucleon Iron projectile.
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Figure 4.C. Differential LET spectrum for a depth of 15 cm of water for a 600

MeV/nucleon Iron projectile.


